Electron Transport by Filamentous Bacteria

Necessity is the mother of natural selection. When conditions become threatening, maverick or mutant members of a group which can cope with the threat survive and multiply. The latest example is the discovery of a special type of bacteria in the ocean, which join together to form a long conducting nanowire cable to transport electrons and capture the oxygen at the surface for metabolic use. This wire is not made of metal, alloy or other usual material, but of living biological cells. The report by Dr. Christian Pfeiffer and others in the 8 November 2012 issue of Nature is a live example of the Panchatantra tale which teaches the value of cooperation between individuals to win over a problem. Read more…

 

D Balasubramanian who wrote this article in the today’s issue of ‘The Hindu‘ is an Ophthalmologist from India and regularly contributes to the newspaper through his column ‘Speaking of Science’.

 

Original Article from Nature

Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.

Read more…

 

Related

 

Leave a comment